
Presenter
Presentation Notes
Jeff intro slide 1 we all do self-intro, jeff 4-6
Irina 7-13
Nick takes slides 14-24
Jeff 25-35
Irina 36-40 – introduce concepts of version control and developing with code
Nick 41-53
Group – 53/54

https://trailblazer.me/id/jhilyard


Irina Khomyakova



"Safe harbor" Statement

● Forward -looking statements?
● Jeff is not an MVP :-)
● YMMV



Application Lifecycle
and 

Development Models



Take the Trail

● Determine Which Application Lifecycle 
Management Model is Right for You

https://trailhead.salesforce.com/en/content/learn/trails/determine-which-application-lifecycle-management-model-is-right-for-you


Idea

Presenter
Presentation Notes
Irina 7-13



Do some work...

● Collect User Stories
● Build
● Test
● Release



Work Becomes Metadata

● Metadata

○ Objects - Contact

○ Fields - Name

○ Automation – Process Builders
● Data

○ Values – Jenny Walker – 612-867-5309



Phase 1



Idea



Do more work...

● Collect User Stories
● Build
● Test
● Release



Iterate



Typical Lifecycle

Presenter
Presentation Notes
Nick takes slides 14-23
Step 1: Plan Release
Start your customization or development project with a plan. Gather requirements and analyze them. Have your product manager (or equivalent) create design specifications and share them with the development team for implementation. Determine the various development and testing environments the team needs as the project progresses through the ALM cycle.
Step 2: Develop
Complete the work, following the design specifications. Perform the work in an environment containing a copy of the production org’s metadata, but with no production data. Develop on Lightning Platform using an appropriate combination of declarative tools (Process Builder, the Custom Object wizard, and others in the UI) and programmatic tools (Developer Console, Source Code Editor, or Visual Studio Code).
Step 3: Test
Exercise the changes you’re making to check that they work as intended before you integrate them with other people’s work. Do your testing in the same type of environment as you used in the develop step, but keep your development and integrated testing environments separate. At this point, focus on testing your changes themselves, not on understanding how your changes affect other parts of the release or the app as a whole.
Step 4: Build Release
Aggregate all the assets you created or modified during the develop stage into a single release artifact: a logical bundle of customizations that you deploy to production. From this point on, focus on what you’re going to release, not on the contributions of individuals.
Step 5: Test Release
Test what you’re actually going to deploy, but test safely in a staging environment that mimics production as much as possible. Use a realistic amount of representative production data. Connect your test environments with all the external systems they need to mimic your production system’s integration points. Run full regression and final performance tests in this step. Test the release with a small set of experienced people who provide feedback (a technique called user-acceptance testing).
Step 6: Release
When you’ve completed your testing and met your quality benchmarks, you can deploy the customization to production. Train your employees and partners so they understand the changes. If a release has significant user impact, create a separate environment with realistic data for training users.



Project Management to Track Changes



Places to Develop



Production Development

What's Safe?
● Reports
● Dashboards
● Email templates?



Sandbox Development



Scratch Orgs

● Stay Tuned...



Releases



Release Metadata Flow



Types of Releases

Patch

Minor

Major

As needs arise, fixing an 
issue, deploy when done

Day to day updates, align with 
sprint cadence

Center around large initiative with 
go live dates for functionality/team



Frequency of Releases

● How often are you all deploying changes?

Weekly Bi-Weekly Whenever
Needed Release?



Consistency

Presenter
Presentation Notes
Set a schedule and stick to it.  No matter the frequency, keep the deployments consistent.
After hours may be best to limit chance deployment issues arise



Change Set Development

Presenter
Presentation Notes
Jeff does Change Set section currently 25-35



Change Sets

● For deployments between a production org and its sandboxes
● No separate development tools needed
● Admin -oriented, short learning curve
● Metadata only
● Only include specified components



Where Development is Done

● Salesforce UI
● "Clicks not Code" (and Code?)
● Developer Sandbox related to production org



Tracking Changes

● Make a list!

○ Track changes through environments – who/what/where/when
● Indicate which changes require manual migration

○ Setup Audit Trail

○ Metadata Coverage Report

https://developer.salesforce.com/docs/metadata-coverage/48


Test Changes Locally

● Test in Developer Sandbox before deployment
● "Measure twice, cut once"



Staging (DevPro SB) Deployment

● Create Outbound Change Set
● Check Dependencies!
● Create Deployment Connection
● Upload Change Set
● Deploy Change Set
● Test for:

○ Completeness of change set / desired features present

○ Undesired overlap with other change sets in Staging (integration testing)



QA (Partial/Full SB) Deployment

● Create Outbound Change Set (from Staging; for release cadence)
● Check Dependencies!
● Create Deployment Connection
● Upload Change Set
● Deploy Change Set
● Test for:

○ Completeness of change set

○ Validity of changes with a copy of live data (User Acceptance Testing)



Production Deployment

● Clone Outbound Change Set (Staging)
● Check Dependencies!
● Create Deployment Connection
● Upload Change Set
● Validate Change Set
● Deploy Change Set
● Production Testing for:

○ Validity of changes in production (production users & profiles, etc.)



Change Set Demo Video

● Trailhead: Change Set Development Model scenario
● Can't use Developer Edition or Trailhead Playground orgs!



Change Sets In Real Life



Vendor Solutions Exist!*

● ClickDeploy.io
● Copado
● Flosum
● GearSet
● Panaya
● … and more
● OwnBackup (metadata restore, sandbox data seeding with anonymizer)
● What are your favorite tools to help with Change Sets?
* Random sampling of ALM tools vendors in alphabetical order



Org Based Development

Presenter
Presentation Notes
Irina 36-40 – introduce concepts of version control and developing with code



Org Based Model Defined

● Source control repository to store changes and project files

○ Greater flexibility and scalability

○ New ways to track and manage change

■ Version Control



"Repository"



Metadata as a file



Tracking Changes

● See changes over time via Github



SalesforceDX

● Source-driven development
○ Version control code, metadata and org 

configuration

● Rapid testing and development
○ Scratch orgs for dev and test

● Open and standard developer experience
○ Build with tools including Git, Selenium, Eclipse, 

Sublime and more





Admin Use Cases

Segment
Work

Proof of
Concept

Version
Control Testing



Where Development is Done – Scratch Org

● Fully configurable Salesforce instance

○ Emulate different editions, features, preferences

○ Create/delete at anytime
● Personal Environments

Presenter
Presentation Notes
How different than sandbox
-Sandboxes are limited to production metadata



Typical Development Flow

Geico Commercial

Pull changes made in Salesforce to repository

Make Changes in the Scratch Org

Push metadata scratch org

https://www.youtube.com/watch?v=8wuk8OKgeXk


Tracking Changes

● See changes in real time



Deployment

● Command to deploy build to org of your choosing





Why Go This Route?

Multiple Sandboxes with different use cases
Limited Test Data in sandboxes
Sandboxes are not in sync
Separate sandbox for testing



CumulusCI Extends SFDX

Presenter
Presentation Notes
Integration of Salesforce DX into the package release cycle
Reducing the burden and risk of cutting managed package releases
Agile development based on best practices of isolation and continuous integration
Reducing the pain of creating usable environments for QA, Doc, PM, etc
Scalability to handle new projects and growing project teams
Avoiding technical debt by encouraging reuse through portable automation



Automation Flow

Create 
scratch org 
to build 
features

Import 
production 
data using 
simple 
commands

Make changes 
within Org

Pull/Push
changes to 
QA org to 
confirm 
functionality

Scripts set 
configuration 
values



Demo of CumulusCI in Action

Presenter
Presentation Notes
First 50 seconds – New Org/Definitions/Cumulus File
3:30 – CCI automation tasks
4:25 – open scratch org
7:00 – pull changes to local repo
8:00 – pulled to repo
8:40 – deploy to org
9:00 – open sandbox org to show changes






Package Based Development

Presenter
Presentation Notes
https://developer.salesforce.com/blogs/2018/06/working-with-modular-development-and-unlocked-packages-part-1.html



Get Involved

Vote up Ideas

● Prioritization

Attend User Groups

Post on the Hub

https://trailblazer.salesforce.com/ideaSearch?filter=Up+for+Prioritization
https://trailblazercommunitygroups.com/
https://powerofus.force.com/s/group/0F980000000PUQBCA4/business-school


Resources

● https://trailhead.salesforce.com/en/content/learn/trails/determine -which -
application -lifecycle-management -model -is-right -for -you

● https://resources.docs.salesforce.com/224/latest/en -
us/sfdc/pdf/deploy_sandboxes.pdf

● Considerations for Permission Sets and Profiles

https://trailhead.salesforce.com/en/content/learn/trails/determine-which-application-lifecycle-management-model-is-right-for-you
https://resources.docs.salesforce.com/224/latest/en-us/sfdc/pdf/deploy_sandboxes.pdf
https://help.salesforce.com/articleView?id=changesets_perm_sets_profiles.htm


SFDX/CumulusCI Resources

Understanding of metadata
● Salesforce metadata is a collection of files with underlying code
● Limited needs to touch files unless you feel confident

Additional Tools to Learn/Use
● Git and GitHub , Visual Studio and Continuous Integration
● Postgresql for import/export of data
● Trailhead Trail on SFDX
● Cumulus CI Tutorial & Training at Higher Ed Summit

https://trailhead.salesforce.com/content/learn/modules/git-and-git-hub-basics?trail_id=sfdx_get_started
https://trailhead.salesforce.com/content/learn/projects/quickstart-vscode-salesforce?trail_id=sfdx_get_started
https://trailhead.salesforce.com/content/learn/modules/sfdx_travis_ci?trail_id=sfdx_get_started
https://www.postgresql.org/
https://trailhead.salesforce.com/content/learn/trails/sfdx_get_started
https://cumulusci.readthedocs.io/en/latest/index.html
https://www.eventbrite.com/e/cumulusci-hands-on-training-at-the-higher-ed-summit-tickets-94753697861


Discussion Time

Where are you on your 
Salesforce journey?

What tools are 
you using for 
release management?

What is the next thing 
you plan to do to make 
your release 
management better?




	Slide Number 1
	Slide Number 2
	"Safe harbor" Statement
	Application Lifecycle� and �Development Models
	Take the Trail
	Idea
	Do some work...
	Work Becomes Metadata
	Phase 1
	Idea
	Do more work...
	Iterate
	Typical Lifecycle
	Project Management to Track Changes
	Places to Develop
	Production Development
	Sandbox Development
	Scratch Orgs
	Releases
	Release Metadata Flow
	Types of Releases
	Frequency of Releases
	Consistency
	Change Set Development
	Change Sets
	Where Development is Done
	Tracking Changes
	Test Changes Locally
	Staging (DevPro SB) Deployment
	QA (Partial/Full SB) Deployment
	Production Deployment
	Change Set Demo Video
	Change Sets In Real Life�
	Vendor Solutions Exist!*
	Org Based Development
	Org Based Model Defined
	"Repository"
	Metadata as a file
	Tracking Changes

	SalesforceDX
	Slide Number 42
	Admin Use Cases
	Where Development is Done – Scratch Org
	Typical Development Flow
	Tracking Changes
	Deployment
	Slide Number 48
	Why Go This Route?
	CumulusCI Extends SFDX
	Automation Flow
	Demo of CumulusCI in Action
	Package Based Development
	Get Involved
	Resources
	SFDX/CumulusCI Resources
	Discussion Time
	Slide Number 58

